The virus that has devastated the world this year, SARS-CoV-2, is not a living organism. Viruses are not alive. Think of them instead as biological machines, incredibly small ones.
What, exactly, is a virus? Many people outside the world of science and medicine don’t really know, so today I’m going to describe just a few of their essential features.
Viruses have, in general, just two functions: they invade your cells, and then they borrow your own cells’ machinery to copy themselves. (Note: for simplicity I’m describing viruses that infect humans, but in reality they infect pretty much every living thing, from bacteria to plants to animals.) After making many copies, they break out, usually destroying the cell they’ve invaded, and do it again.
Here’s a weird thing about viruses. All living things on this planet are made from instructions encoded in DNA. Some viruses are also made of DNA, but many are made of RNA instead. RNA is a lot like DNA, but it doesn’t have that famous double-stranded helix structure; instead, it’s just a single strand.
Now consider how small they are. The Covid-19 virus, SARS-CoV-2, has just 29 genes that are encoded in just under 30,000 letters of RNA. Other viruses can be even smaller: the influenza virus has just 10 genes, encoded in 13,588 letters of RNA. In contrast, the human genome has about 3 billion letters of DNA, and over 20,000 genes. In other words, our genome has 100,000 times more information encoded in it than the Covid-19 virus.
And yet these simple machines with a handful of genes can destroy us. Think of it like throwing a wrench into a running engine: the wrench is simple, but that doesn’t mean it can’t gum up the works of a far more complicated device. So too with viruses and their hosts.
It’s not just that they have a small genetic code: viruses are also physically small. So small, in fact that they cannot be seen under a normal microscope. Bacteria are huge compared to viruses; in fact, bacteria suffer viral infections just like humans do.
(Aside: the exciting new technology known as CRISPR is actually a mechanism created by bacteria to fight off viral infections!)
One consequence of virus’s tiny size is that when the 1918 flu pandemic swept the world, no one knew it was caused by a virus. Scientists didn’t have the technology to see a virus at that time. The influenza virus–the true cause of flu–wasn’t discovered until 15 years later, in 1933.
(Another aside: a bacterium called Haemophilus influenzae was given its name because scientists thought it caused the flu. It doesn’t. It does cause ear infections and sometimes-deadly meningitis, though, and for that reason the Hib vaccine, which prevents infection from this bacterium, is a critical part of the childhood vaccine schedule.)
Another odd fact about viruses: they’re not cells. They don’t have a proper cell wall, as such, just a shell made out of a few proteins. The shells encapsulate the tiny genetic code of the virus. We call them “particles” for lack of a better word.
Viruses are everywhere, and they are far more numerous than bacteria. Bacteria, in turn, are far more numerous than plants and animals. Viruses are also devastatingly effective at what they do (infecting living cells and hijacking those cells to make more viruses), which is why we will never rid ourselves of them.
While we can’t get rid of them, we can fight the viruses that cause human diseases like Covid-19. The best way to do that is to prevent viruses from invading our cells. How? There’s only one good way that we know of so far, and that’s to use the human immune system to fight them off at the molecular level. (While viruses are simple, the immune system is really complicated. I can’t possibly explain it here, but check out Ed Yong’s recent story at The Atlantic for an excellent attempt to de-mystify the immune system.)
This is where vaccination comes in. When a virus invades us, our immune system creates custom-designed cells (see that Ed Yong article) that recognize and destroy the virus. Then it becomes a race: if the immune system wins, it destroys all of the viral particles. If the virus overwhelms the host, the result can be fatal.
For Covid-19, most people mount an immune response quickly enough to avoid getting seriously ill. However, for those that don’t, the results are extremely serious. A vaccine works by “showing” the immune system part of the virus, but doing this in a way that isn’t actually an infection. One strategy used by several of the Covid-19 vaccines under development is to just package up one of the SARS-CoV-2 proteins, without the rest of the virus. The vaccine itself will prime the immune system to recognize the Covid-19 virus without actually causing an infection. Then, if that person is actually infected, the immune system swings into action quickly, and fights off Covid-19 before it ever gets established.
So that’s it. Covid-19 is caused by a tiny, sub-microscopic biological machine, a virus with just 29 genes. The virus can be ruthlessly effective, but our immune system can wipe it out if we give it the right clues. Let’s hope we’ll have a vaccine soon.
Disclaimer: the content on this site is my personal opinion and is independent of my affiliation with Johns Hopkins University.
No comments:
Post a Comment
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS
Note: Only a member of this blog may post a comment.